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Abstract—In this paper, the problem of robust optimization ~makes use of the possibility characteristics of fuzzy uncer-
is considered for dynamical systems with both constraints and tainty and optimizes the average performance of objectives
uncertainties. Conditions are established to ensure the existence 3,4 constraints. For solving practical optimization problems
of solutions to the problem with both robust optimality and . . . S
feasibility. The objective performance with respect to fuzzy thesg methods can pr0y|de relatively robust. sqlutlon that is
uncertainties is evaluated based on the expectation_entropy feaSIble a.nd Close to Optlmal fOI‘ most Of admISSIble uncertain
model. A feasibility robustness analysis method is proposed to parameters.
handle the uncertainties in the constraints. Using the hierarchy  The trade-off model in a realistic robust optimization con-
structure in robust design, the optimization framework based gjqars poth optimality robustness and feasibility robustness.

on Stackelberg-Nash game is developed. A leader-followers stateF f biective functi th timalit bust .
transition algorithm is designed to search for the equilibrium or Tuzzy objeclive tunction, the optimallly robustness 1S

solution. Two application examples are given to demonstrate €valuated based on the expectation-entropy model [6]. The
that the proposed robust optimization method can accurately fuzzy expectation can represent the average performance of
evaluate thg robustness performance and successfully search forthe objective function, and the fuzzy entropy can quantify
a compromise solution. the uncertainty of the objective performance [7]. For fuzzy
Index Terms—Constrained robust optimization, fuzzy variable, inequality constraints, the reliability assessment model is es-
feasibility robustness analysis, Stackelberg-Nash game, state tran-tablished to measure the safety possibility [8]. The traditional
sition algorithm reliability analysis treats a solution as safety state only if
all its possible constraint values meet the requirements. This
operation makes the reliability analysis results too conservative
to accurately evaluate constraints performance [9]. Wang et
Uzzy uncertainties are unavoidable in practical engineett. modified the fuzzy reliability model based on the interval
ing problems due to the vagueness of subjective judgmeahking strategy, and made it more reliable to analyze various
and the impreciseness of objective knowledge [1]. As a typiciizzy systems [10]. For fuzzy equality constraints, previous
representative of uncertainty measurement, the robustnessdiagies focused on linear programming and transformed the
been an important concept in structure design and procésszy equality constraints to the crisp ones using the measure
optimization. of the similarity [11][12]. In order to handle fuzzy constraint
Robust optimization theory is developed to find solutionig general optimization problem, it is necessary to design
that are insensitive to uncertainties. In order to analyze thecomprehensive analysis method to evaluate the feasibility
sensitivity region of candidates, the uncertain parameter hagustness for inequality constraints and equality constraints.
been treated as an interval variable, and the nominal valuegn game theory, there are three major strategies used when
and the variation value of objectives and constraints hagearching for a compromise solution considering both opti-
been estimated [2]. This type of method can guarantee thadlity robustness and feasibility robustness [13][14][15][16]:
the solution is feasible for all admissible values of uncertaihe Pareto-based strategy, the Nash-based strategy, and the
parameters and the objective function has robust performaiStackelberg-based strategy. Let each player correspond to
[3]. However, it is too conservative to obtain a solution that ia metric to be optimized. The Pareto-based strategy is a
insensitive to all uncertainties. This leads to a trade-off modeboperative game in which players have knowledge of the
(multi-objective model) to balance the robustness and the cdgicisions made by other players. Through communication
of robustness [4][5]. Here, the robust optimization methoahd cooperation among the players, a set of Pareto optimal
solutions can be obtained. This Pareto optimal solution set has
This work was funded by the National Natural Science Foundation of Chilﬁ? preference for the objective function. Decision makers will
(Grant Nos. 61860206014, 61873285), the Innovation-Driven Plan in CentElave to select the final optimal solution from the Pareto-front.
South University (Grant No. 2018CX012), and the 111 Project (Grant NO.
B17048)(Corresponding author: Xiaojun Zhou.) The Nash-based strategy is a non-cooperative game in which

J. Han, C. Yang and X. Zhou are with the School of Automationglayers have equal status and act independently. A steady
Central South University, Changsha 410083, China, and Xiaojun Zhou

i S .
also with the Peng Cheng Laboratory, Shenzhen 518000, China. (e-m&flaSh e.qu”'b”um will be reached when each playgr cannot
hanjie@csu.edu.cn; ychh@csu.edu.cn; michael.x.zhou@csu.edu.cn). further improve its own outcome due to the constraint of the

C.C. Lim and P. Shi are with the School of Electrical and Electronigither players’ decision. The Stackelberg-based strategy is also
Engineering, The University of Adelaide, Adelaide 5005, Australia (e-mail: . . hich bl h hi h
cheng.lim@adelaide.edu.au; peng.shi@adelaide.edu.au). a non-cooperative game In which players have a hierarchy

Manuscript received XX XX, 2020; revised XX XX, 2020. of leaders and followers. The leaders could anticipate the

|. INTRODUCTION

1063-6706 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Central South University. Downloaded on May 11,2021 at 12:57:51 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2020.3025697, IEEE
Transactions on Fuzzy Systems

JOURNAL OF BTeX CLASS FILES 2

followers’ reaction and optimize their decision accordinglffjormed to a fuzzy robust optimization problem considering
while the followers can only optimize their strategies basdabth optimality robustness and feasibility robustness.
on the leaders’ decision.

When evaluating the solution quality for a constrained S
robust optimization problem, feasibility robustness is mon‘%‘ Optimality robustness
important than optimality robustness [17]. In the context of Optimality robustness evaluates the sensitivity of the objec-
finding a realistic robust solution for the fuzzy optimizationive function to uncertainties. For (almost) all possible values
problem, the feasibility robustness is regarded as the leadéruncertain parameters, the objective function value should
objective and the optimality robustness is taken as the foeemain close to the optimal value or have little deviation
lower objective. Since there are two metrics (expectation afrdm the optimal value [4]. Therefore, to handle the fuzzy
entropy) to evaluate the optimality robustness, the Nash-basetertainties in objective function, the expectation-entropy
strategy can be used to handle the relationship between tmwodel is studied to analyze the optimality robustness.
followers. Therefore, the Stackelberg-Nash game is investi-Presented here are some basic definitions of fuzzy variable
gated to optimize the fuzzy problem with one-leader and twbased on uncertainty theory [7].
follower strategies, aiming to find a solution with preferencs

t ds feasibility robust . . :
owards Teasiiiity fobUsinESs dmembershlp functionu(t) and z be a real number, then the

The novelty and contribution of this study is threefol I~ 5 . . i
(1) a comprehensive feasibility robustness analysis methooFlrseO“b'“ty Cr{-} that event § < 2” will occur is defined by

proposed, which includes the possibilistic safety (failure) index ~ 1

for inequality constraints and the discrimination index for Crif <z} = 5@25“’5) +1 _T;E“(t))' (1)

equality constraints; (2) a Stackelberg-Nash based robust opti- a

mization model is established, which can not only subjectively The fuzzy event must hold if its credibility value is 1 and

choose the feasibility robustness as a priority target, but af@ if the credibility value is 0.

objectively balance the trade-off between robustness metrigiifinition 2. Let 3 denote a fuzzy variable. The expected

(3) a leader-followers state transition a_l_gonthm is deS|gngd Biue of 3 is defined by

search for the Stackelberg-Nash equilibrium. The algorithm .

overcomes the nonlinearity and nonconvexity of the players’ _ - Feo ~

objective function. Two engineering optimization problems E[B] :/0 Crif =z Z}dz_/

with fuzzy parameters are used to verify the effectiveness of R

the proposed robust optimization method. Definition 3. Let 3 denote a fuzzy variable. The entropy of
The remainder of this paper is organized as follows. Sectignis defined by

2 describes the robust optimization problem with fuzzy param- too

eters. A comprehensive feasibility robustness analysis methog|j3] = / (—Cr{ =z} InCr{3 = z})dz

is introduced in Section 3. Section 4 provides the framework —oo ©)

of robust optimization method based on the Stackelberg-Nash n /+°°

game. Applications of the robust optimization method in using

a vehicle side impact design and a power scheduling design

are presented in Section 5. Section 6 concludes this paper anih® expected value[.] represents the average value of
offers some possible future research directions. a fuzzy variable, and the entropy valuB[.] provides a
guantitative measure of the uncertainty (variability) associated

with fuzzy variable [18]. Based on the fuzzy entropy model,
we can estimate the fuzziness resulting from information
Consider a general constrained optimization problem: deficiency caused by the inability to accurately predict the
specified values, so as to evaluate the robustness performance
of objective functions. The smaller the fuzzy entropy is, the
Problem P1 st gj(m,ﬁ) <djj=1,,q less fuzziness of the_vg_riable. .

Based on the definitions of fuzzy expectation and fuzzy
entropy, the fuzzy objective function in ProbleRl can be

efinition 1. Let 3 denote a fuzzy variable with assigned

Cr{3<z}dz. (2

— 00

((1—Cr{f=2})In(1—Cr{f=2}))d=.

— 0o

Il. PROBLEM FORMULATION
min f(x,p
Iin f(z,p)

h](waﬁ) = 6?]’.7 = 17 s Ty

wheref (x, p) is the objective functionr = (1,22, ...,7,) reformulated to evaluate the optimality robustness via:

is a n-d|me_ns!0nal decision varliall_ale bounded by its lower min  Eff (z,p)], 4)

and upper limits £; < = < x,); p is the parameter vector, zERN

which could be fuzzy variable and uses membership function mIiRn Dif (z,p)]. (5)
we n

to represent the degree of uncertaingy:x, p) is the set of
q inequality constraints antl(z, p) is the set ofr equality The aim of (4) is to find a solution with the best average
constraintsg andb are the right hand side of each constrainperformance; and the aim of (5) is to minimize the fuzziness
which can also be fuzzy variables. of the performance. With the above two functions, the mini-

To analyze the uncertainty in both objective function anehization of the uncertain functiof(-) can be transformed to
constraint functions, in this paper, Probldm will be trans- minimize two deterministic quality indexes.
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A 1
B. Feasihility robustness I, =Pos§G=g(z,p)>a} :/ dg(o)da=a. 9)
Feasibility robustness provides a measure of constraints’ 0
uncertainty. For (almost) all possible values of uncertalfi order to find a solution with high feasibility robustness,
parameters, the solution should remain feasible [4]. In ordée fuzzy possibilistic safety index should be maximized or
to evaluate the fuzzy uncertainties of the constraints, the fuZ¢ fuzzy possibilistic failure index should be minimized.
reliability based on possibilistic safety index is analyzed. Therefore, the inequality constraints with fuzzy uncertainties
For inequality constraints, let us consider a constraiigth be transformed to the following deterministic forms:
g(x,p) < a, whose parametep is a fuzzy variable and
right hand side parameteris a real number. With the fuzzy . - .
parametesp, the constraint valu& = g(z, p) is also a fuzzy ~ 1ax > Isi[g;(=, p)] or min > Hpifgi(x.p).  (10)
variable and its membership functign; can be calculated =1 =1 _ ,
based om-cut technique [19]. Fig.1 gives an example of the It should be noted that the state of constraint value in

order relation betwee@ anda, where the variablérepresents transition domain is either “safe” or “failure”, which ignores
the possible constraint value. additional possibility information. For example, as illustrated

in Fig.1, the fuzzy variable& and G’ have the same*-cut

set. According to (8), even if fuzzy variables have different
@ St Failure domain membership functions, their fuzzy possibilistic safety indexes
will not stay same. Therefore, the possibilistic safety index
in transition state should be modified to accurate qualify the
fuzzy information.

To our knowledge, there are few studies on the uncer-
tainty measurement for nonlinear fuzzy equality constraint.
Therefore, in next section, we will provide a comprehensive
feasibility robustness analysis method for various of fuzzy
constraints.

q

e ! I1l. COMPREHENSIVE FEASIBILITY ROBUSTNESS
ANALYSIS METHOD
Fig. 1: Order relation among@, G’ anda In ProblemP1, there are inequality constraints and equality
] constraints, and both sides of the constraint could contain
For any membership level < [0,1], the cut setG™ = 77y parameters. Fig.2 gives six kinds of constraints with
{t|pc(t) = a}is an interval defined a§7~, G™]. The f,,7y uncertainties, in whicl, a, andb are fuzzy variables.
critical condition ¢ = g(z,p) = « divides the variable ith fuzzy parametep, the left hand side of the constraint is

space into two parts: the safety domaln with (=, p) < a  ajso an fuzzy variable, and its membership function is assumed
and the failure domairi2; with g(z,p) > a. If the lower 4 pe triangular shape. With fuzzy right hand side parameters
bound of the cut set satisfies§™* > a, then all possible ; 404} (assumed to be triangular fuzzy variables), there are
values of G at membership levek are bigger tham, and ifferent safety levels for different constraint values. The red

the constraint fails. Conversely, if the upper bound of the cdbor in Fig.2 represents the safety domain, and the darker the
set satisfiesi " < q, then all possible values d¥ satisfy g|or the safer the constraint value.

the constraint and remain safe. For the transition domain with
G™™ < a < G, the minimum membership level* is o gxp)<a o  glup)<a o  gxp)<a
defined to represent the safety state [10]: : :

' He a 'u“\ /G Ho Hy
o* = inf a. (6) >/ N7 ~ ~
Gte<a,a€l0,1] “ “ “
Based on the traditional fuzzy reliability theory [9], the | ,
interval possibilistic safety index,(«) under different mem-
bership levels can be defined as @  hxp)=b ®  hxp)=b ©  xp)=b
i 0 if a<a* T = CER
dy(a) = Pos§G™ = g(z,p°) < a} = SRR ¢y N Va'd Vs
1 if a>a* « « «
where Pos§} represents the possibility of the evept, the ,

interval possibilistic failure index isl¢(a) = 1 — dg(a).
By aggregating all possibilities under different membershipig. 2: Description of fuzzy inequality constraint and equality
levels, the final fuzzy possibilistic safety indék, and fuzzy constraint
possibilistic failure indexI; can be calculated as:
Based on the characteristics of different constraints in Fig.2,

~ 1 . we propose a comprehensive analysis method to evaluate the
I, =Pos4G'=g(z,p) <a} :/0 ds(a)da=1—a",  (8) feasibility robustness.
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A. Feasibility robustness analysis for inequality constraint Then, based on the analysis of the possibility that the
To find a solution with high possibilistic safety index constraint value ) is greater than or less than the target
the traditional fuzzy reliability theory is found to be toov@lué @), in robust optimization process, we would like to
conservative to accurately measure the safety index. Thﬁg!ect a solution with a smaller possibilistic failure index
an analysis method based on the interval ranking strategyPls larger possibilistic safety index, so that the possibility
proposed to evaluate the feasibility robustness for inequal@y satisfying the inequality constraints is higher. The fuzzy
constraint. inequality constraints in ProbleR1 can be transformed to
Under any membership level € [0,1], the fuzzy vari- the following deterministic forms:
able can be transformed to an interval variable. Based on

the interval possibility theory [9] [20], the possibility that e ~ R )
G =g(x,p*) = [G~*,G*] is larger thari® = [a—*,at?] max 1125 [9;(z, P)] or min ZHN 9;(x,p)]. (18)
can be calculated by i=1 i=1

PosgG< da}:max(oa wge +wge—max(0, Gm—dﬂ)). (11) B. Feasibility robustness analysis for equality constraint
Wee +Wae In order to improve the feasibility robustness, we want
wherewgs = Gt — G=* andwz= = a*t® — a~® On this to find a solution whose equality constraint value is within
basis, the possibilistic index for inequality constraints in Fig.the acceptable range and as close as possible to the ideal
(cases 1, 2, and 3) can be analyzed as: value. Cross-entropy can measure the degree of discrimination
o Case 1: the left hand side parametgi (s a fuzzy between two fuzzy variables. Therefore, we introduce the
number, and the right hand side parametéri§ a real concept of fuzzy cross-entropy to evaluate the feasibility
number. We only accept constraint value less thars a robustness of equality constraint. The definition of fuzzy cross-
safe state. The possibilistic safety index and possibilistntropy [21][22] is as follows:
failure index are modified to:

¢ = Pos4G = g(x,p) < a}

Definition 4. Let 5; and 3, denote fuzzy variables with
assigned membership functiops and 12, respectively, then

/1max(0, wge —max(0, Gt — a))d (12) the cross-entropy of; from 3, is defined by
= a’
0 wee 5 A | pa(t)
I} = Pos§G = g(x, p) > a} Olbr, Po)= o () log %(ul(t)+u2(t))dt
(13) (19)

1
max (0, wga —max(0,a — G™®)) 11— (t
-/ da [0 togy — g
0 wee . 1=3 (1 (t)+p2(t))
The cross—entropﬁ(@l,ﬁg) is not symmetric with respect
to its arguments, and a symmetric cross-entropy can be con-
structed as:

1(B1, B2) = C (B, Ba) + C(Bz, Br). (20)

According to Shannon’s inequality, it is easy to prove that
(14) I(B1, B2) > 0, where the equality holds if and only/# = 3.
) Then, the discrimination betweeH = h(z,p) andb in
Fig.2 (cases 4, 5, and 6) can be analyzed as:
(15) o Case 4: the left hand side parametgy i6 a fuzzy num-
dao. ber, and the right hand side parametgri a real number.
To measure the distance between the constraint value
H = h(x,p) and the ideal valué, the discrimination
index based on symmetric cross-entropy can be calculated

o Case 2: the right hand side parametéj (s a fuzzy
number, and the left hand side parametey ic a real
number. The safety level betwe&iT <, a+<| depends on
the membership level ai. The possibilistic safety index
and possibilistic failure index are modified to:

I[{?" = Pos4G = g(x,p) < a}
B /1 max(0, wge —max(0, G—a %))
o 0 wda
e = Pos§G =g(x,p) >a *}
/1 max (0, wze —max(0, a™ — G))
0

waoc

do

o Case 3: both sides parametefsgnda) are fuzzy num-
bers, and the possibilistic safety index and possibilistic

failure index are modified to: as:
Mg =Pos¢G = g(x, p) < a} U =I(H,b) = C(h(z,p),b) + C(b,h(z,p)), (21)
'max(0,wga+wza—max(0, GT*—a ")) (16) . .
= — do, where the membership function of real numberan be
0 G a™

considered as

1 if t=b
“b(t):{o if ¢ b.

}*=PosgG = g(z,p) >a '}
/lmax((),wga—i—waa—max((),EL'H’—G_Q))da (17)
N 0 WGa +Wge '

Compared with the traditional reliability analysis in (8) and «

(9), the modified possibilistic safety index and possibilistic

failure index can make use of the uncertain information more

efficiently, which is more realistic in engineering practice [9].

Case 5: the right hand side paramet&) is a fuzzy
number, and the left hand side parametey ic a real
number. The ideal constraint valuebis and the satisfac-
tion level betweerb—°, 51°] depends on the membership
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level of b. We divide the fuzzy parametér into two are evaluated simultaneously. In most practical applications,
parts: the lower bound sef, = [5*0, Bl] and upper the optimal solution for the constrained optimization problem

bound seb, = [51, B*O]. The discrimination index should is the candidate with the optimal objective function among the

consider not only the distance from ideal value, but aldeasible solutions that satisfy the constraints. Therefore, in this
the satisfaction of the boundary, which can be calculat@éper, the feasibility robustness of a solution is more important
as: than its optimality robustness. Considering the hierarchy be-
tween the feasibility robustness and the optimality robustness,
- ~ - we propose a game-theoretic optimization framework to rank
U=1I(H,b) + PosgH <bi} + PosgH >bu}, (22) the priorities of these three objective functions.

where the Pogsd < b} and Pos§H > b,} can be

° Case 6: bOth SideS parametelﬁ é.nd b) are fUZZy STACKELBERG'NASH GAME
numbers, and the discrimination index can be calculated _
as: Stackelberg-Nash game, as a noncooperative game strategy,

~ _ ~ involves one leader and several followers of equal status
U =I(H,b") +Pos§H <b} + Pos§H>b,}, (23) and is well suited for hierarchical decision-making modeling
where the Poss < 51} and PosgH > l;u} can be [15][23]. Theileader (hlgher—lt_evel_ obJect|ve_) could ant|<_:|p_ate
. - the followers’ (lower-level objective) reaction and optimize
obtained based on the analysis in Case 3.

its decision accordingly. After observing leader’s play, the

From the above analysis about the closeness of the cefyiowers could optimize their objectives and reach a Nash
straint value {f) to the target valued, in robust optimization eqyilibrium [24]. Considering that the objectives in Problem

process, we will select a solution with a smaller discriminatioBs have different priorities, the optimization method based on
index, so that the equality constraint value is not only closg{g Stackelberg-Nash game is derived in this section.
to the ideal value but also with higher possibility to be within

the acceptance range. Thus, the fuzzy equality constraints in

ProblemP1 can be transformed to: A. Sackelberg-Nash game
min 2221 U, [h;(z,p)] (24) Consider anm + 1 player game with one leader and
zER™ ' followers. The payoff functions of leader and followers are
The robustness analyses for inequality constraints (18) aiegpresented a§, and f (i = 1,...,m), respectively. The

equality constraints (24) are of different dimensional ordersgarch space of decision variable € R) consists of the
To emphasize both indices, a normalization procedure [2] |Rader’s search space;(c R;) and the followers’ search space

applied to transform the constraints in Probl@hto: (i € Ry, i = 1,...,m). The multi-objective optimization
q ew . problem based on the Stackelberg-Nash game can be defined
min (1 —w) Z — -
zER™ — max {II}7[g;(z,p)]} )
==l (25) Leader: Inlﬂg fl(.’Bl, Tf1y.e, :Bfm)
S wlhy(@.p)
+w I I — Follower 1: min f, (x;, xr,...,Cm
; e, L8l (. Pl S
wherew is a weighting factorfI’;% measures the possibility F I _ 0 f ’
of failure to satisfy an inequality constraini; is used to ofowerm - gL Ef1y - T ).
evaluate the discrimination between the equality constraint o
value and the ideal value. The value fois adjusted based on A Stackelberg-Nash equilibrium™ = (z}, z3,,...,z},,)

the complexity of the constraints in the optimization problenghould satisfy the following conditions:

Based on the transformation models in (4), (5), and (2%),(337 s ) = nf f (@ @ () (1)), (27)

the fuzzy robust optimization problem can be formulated as! @ER,
m]iRri Elf (x,p)] where (z% (z1), ..., x},,(z;)) are the followers’ reaction
e - functions coming from the followers’ Nash equilibrium:
min DI (z,5)]
xTeR™
fo(x),@hy. .., x5, )= inf . (x]xpxh,. ..}
. Il (@) R W
Problem P2 min (1 —w) Z = —
zER™ = max {II757[g; (=, p)l} " (28)
- o f. (x],x%, ...2% inf f, (2], 25,25 ... Tm).
roy i@ e N A e
im1 311???7T{‘I’j[hj(map)]} In the context of the Nash equilibrium, it is assumed that each

player knows the equilibrium strategies of others, and that
ProblemP2 is a multi-objective optimization problem, inone player cannot benefit from unilaterally changing its own
which both optimality robustness and feasibility robustnessrategy.
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Nash Game
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P

X i 3
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Leader 3 3
Xr1(x1), Xp2AX1), oo, Xpin(X1) | !

| Follower 1  Follower 2 Follower m !

O e

! X1 ;

Fig. 3: Information flow of the Stackelberg-Nash game

Then, the leader and followers can find their optimal soldranslation transformation:

tion z* = (z,x%,...,x},,) by solving -

k1 _ Lk
X =T +772R2m, (32)
Df, A\ sm Of Dl g (29) xk—ah 1|,
Da|,. O], TTt0En gm0 Expansion transformation:
and 2 =a* £ Ry, (33)
of ¢,
3 /i =0, i=1,...,m. (30) Axesion transformation:
Lfi x*
" =xF LRyt (34)

The information flow of the Stackelberg-Nash game is

shown in Fig.3. The leader provides the decision inform¥nere & is the number of iterations; parameteys, nz, ns,

tion z; to the followers. Each follower passes its decisioﬁndm are rotation factor, translation factor, expansion factor,

to others and also receives the decision of other followefd!d @xesion factor, respectively, which can control the size of
After the followers reaching the Nash equilibrium, the lead&ErCh range; the matrixé®,, R», I3, and Ry have special
will receive the reaction information from the followers. Theelem.e.nts that can control the shape C?f search. range. More
reaction functions(:njcl(wl),...,m;m(wl)) can be computed specifically, the elements of; are uniformly distributed

or approximated by performing a sensitivity analysis [15] th4@ndom variables defined in the intervall, 1]; the elements
introduces a small change if. of R, are uniformly distributed random variable defined in

Based on the Stackelberg-Nash game strategy, Propemthe interval(0, 1]; B; is a random diagonal matrix with its
can be transformed to: elements obeying the Gaussian distribution; dhdis a ran-
. e dom diagonal matrix with its elements obeying the Gaussian
Leader:min(l—w)z I35 0, zp,P) distribution, and only one random position has nonzero value
m.

a €R! o ax(;[H;f;fw @,z p,p); [25].
- To solve the optimization problem in Probldé?3, we design
Yih@, g1, wp, P a leader-followers state transition algorithm. First, the state
Problem P3 D it i i i
roblem e Fr?axr{‘l/jhj(wz, Tf1, T2, Plf transition algorithm runs sequentially on different followers to

Follower 1: min E[f 5] find a Nash equilibrium, which is shown in Algorithm 1. In
o1 CR1 (1, 1, % f2, P order to converge to a Nash equilibrium, a sufficient number
of iterations/ter; is required.

Follower 2: min_DI[f(x;, ¢ 1, Tf2,P)].
@ fo ERF2

Algorithm 1 Followers-based state transition algorithm

Input:
B. Leader-followers state transition algorithm Itery: maximum number of iterations for followers’ opti-

" . . mization
The state transition algorithm (STA) [25][26][27] is a global (29, 20, 29,): initial solution
optimization method. It consists of four stochastic sear tplljt' frres
operators. The main idea behind the STA method is the controﬁj RN h ilibri
- . (z},, T},): Nash equilibrium
theory of state transition and state space representation.

Given a solutionz*, the candidates can be generated by the" for k = 1to Iter; do _ _
following four operators: Rotation transformation: 2: Generating candidate solutions for followers using

state transition operators in (31) to (34)
B _ gk i Ry, (31) 3  Updating the decision, of follower 1f ;, («, %,
l* ]2 x9,) by STA

xr
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4: Updating the decisiozz:’;2 of follower 2ff2(:c?,:1:511, for crashworthiness of vehicle side impact, and (ii) optimiza-

m’}Q) by STA tion for power scheduling. The optimization framework shown
5: ;cf]{l —zk in Fig.4 is used to obtain the equilibrium solution considering
6: ;59[2 — xfy both feasibility robustness and optimality robustness.
7: end for In both examples, the parameter settings of state transition
8: (T, Thy) < (m%”f ?;Tf) algorithm are the same as in [25][26][27]. The algorithm

can solve the optimization problems for such applications as
Then, the leader's optimization procedure |s shown imenchmarks, image segmentation, and process control. The

Algorithm 2. The reaction mformatlorfﬂ and :”f2 can transformation factors arepy = 1,172 = 1,93 = 1,94 = 1.

be computed by perturbing; and repeatlng the foIIowersThe search enforcemerfiF) is 30 and iteration number is 15.

optimization. The maximum numbers of iteration for followers’ optimization

and leader's optimization are both set to 20. The decision

variables for the leader and followers are assigned based

Algorithm 2 Leader-based state transition algorithm

Input: on their spatial distances [28]. All results are obtained by
Eftem maximum number of iterations for leader’s optimizay, a1 AB R2016a software.
ion
(7, 2%, x,): initial solution S . S
Output: A. Case 1. Optimization for crashworthiness of vehicle side
(z],x}, T},): Stackelberg-Nash equilibrium Impact
1: for k = 1to Iter; do The crashworthiness of vehicle side impact is important
2: Obtaining the reaction informatio%mi7 3;;‘2 from in the structure evaluation system [29]. The existence of
Algorithm 1 “ uncertainties in manufacturing process calls for a reliable and
3 Generating candidate solutions for leader using stawebust design. Therefore, we study the optimization of vehicle
tran5|t|on operators (31) to (34) side impact with fuzzy uncertainties, aiming to illustrate the
4 fol kTl 4 ””fl( ) effectiveness of the proposed robust optimization method.
fl ! l . S - . .
5: ‘”f2 “ foQ 1y 6wfz (mf wf 1) Th_e.ve.h|cle side |mpact model (shown in Fig.5) |s_deS|gned
6: Updating the deCISIOIZc of leaderf, (¥, 2%, , 2%,) to minimize the vehicle weightf (-)) as well as meet internal
by STA ! RPCTFU 727 and regulated side impact constraingg-)) specified by the
7- end for vehicle safety requirements [19]:
* * * Iter Iter Iter
8 (xf,a}y,a},) « (¢, 2" ayy™) min  f(z)=1.98+4.90z1+6.672o+6.9823+4.012,
Finally, with the leader and followers’ optimization proce- +1.78x5+2.73x7
dures, the robust optimization problem is solved hierarchically s.t. g, (x, p)=1.16—0.3717z224—0.0093122p;
and the S_ta_(?kelberg-Nash equilibrium is obtained achieve —0.4842329+0.01343z6p1 < 1
better feasibility robustness.
Oy (x, p) = 28.98+3.81823— 4.2, 29 +0.0207z5p;
C. Optimization framework +6.63z6x9 —7.7Tx708+0.3209p1 <32
The framework of the fuzzy robust optimization method gs(x, p) = 33.864+2.95234+0.1792p1 —5.057x1 22
based on the Stacke_lberg-Nash game (with one Iead_er Qnd two —11zo7s —0.021525p1 —9.987 725
followers) is shown in Fig.4. First, in order to quantitatively
+22.§C8I9 S 32

analyze the optimality robustness and feasibility robustness
of ProblemP1, the expectation-entropy model is established 9,(®,p) = 46.36—9.925—12.921 78

to evaluate the performance of fuzzy objective function, and +0.1107z3p; < 32

a comprehensive feasibility robustness analysis method is 05 (x, p) = 0.261—0.01592125+0.000875725p;
proposed to _e\{alugte the performance of fuzzy constramts. —0.0192527 4001447575 —0.18821 75
Then, the optimization problem with fuzzy parameters is trans-

formed to a multi-objective optimization problem (Problem +0.080452679+0.0013925p2

P2). Considering that the feasibility robustness has higher +0.00001575p1p2 <0.32 (35)
priority than the optimality robustness, the Stackelberg-Nash Os(, p) = 0.21440.0081725—0.1312; x5

game is introduced to establish an optimization problem with

one leader and two followers (Probldé®8). Finally, the leader- —0.07042129+0.000771525p; —0.018z227
followers state transition algorithm is conducted to search for +0.02082315+0.1212329 —0.003642526
a Stackelberg-Nash equilibrium. —0.0222—0.0005354z6p1 +0.0012128ps

V. EXAMPLES AND RESULTS +0.00184x9p; +0.030992z226 <0.32
In this section, the effectiveness of the fuzzy robust opti- 97 (@, p) = 0.74—0.6122—0.1632525 +0.0012325py

mization method based on the Stackelberg-Nash game is veri- —0.166x729+0.22723 <0.32
fied via two practical engineering applications: (i) optimization Os(x,p) = 4.72—0.524—0.192223 —0.012224p1
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based optimization >
(Problem P3)
.

Fig. 4: Framework of fuzzy robust optimization based on the Stackelberg-Nash game

Fig. 5: Vehicle side impact model [30]

+0.009325z6p1 +0.000191p2 < 4
0y(x,p) = 10.58—0.0674x122+0.0205423p;
—1.952228 —0.019824p1 +0.028x6p1 <9.9
O,0(x,p) = 16.45—0.8432526+0.04322x9p1

75 = (x5 — 0.15, 25, 75 + 0.15), p1 = (30,0, 30),
p~2 = (_307 07 30)

The objective function of the vehicle side impact model is
a linear function. According to the fuzzy uncertainty theory,
the fuzzy entropy off (-) is a fixed number, and there is no
need to consider the fuzzy entropy in the formulation of robust
optimization problem. Thus, we only consider the expectation
of fuzzy objective function and the possibilistic failure index
of fuzzy constraints. Based on the robustness analysis and the
Stackelberg-Nash game strategy, the fuzzy robust optimization
model for vehicle side impact is represented as:

10
Leader: rrglclln 21_[#' [9,(€1, f,P)]

min E[f(2€;, €7, p)].
xf

(36)
Follower:

—0.489327 —0.055629p2 —0.000786p3 < 15.7 To verify the effectiveness of the feasibility robustness

05<z,<15(Mn=1,2,...,7)
oy = 0.192 or 0.345 (n = 8,9)
b= [070]

where the decision variables are the thickness.(. . , z7) and
material properties of critical partsy, xy); the parameters;

analysis method, we compute the possibilistic failure in-
dexes of two candidates based on the traditional relia-
bility model and the modified model. For two solutions
xz(1) = (0.5,1,1,1,0.5,1.5,0.5,0.3450,0.3450) and z(2)
(0.5,1,1.2,1,0.5,1.5,0.5,0.3450,0.3450), the feasibility robust-
ness for constraing, is analyzed in Table.l.

and p» represent the barrier height and hitting position; the |t can be observed that the possibilistic failure indexes of

constraints are the abdomen loagi )( lower rib deflection
(95), middle rib deflectionds), upper rib deflectiond,), lower
rib viscous criterion @), middle rib viscous criteriong),
upper rib viscous criteriong(), public symphysis forcegg),
velocity of B-pillar at middle pointg,), and velocity of front

(1) and x(2) are the same under the traditional reliability
model. Once the upper bound of the interval abdomen load
exceeds the critical load, it can be considered that the con-
straint ofg, fails. Thus, the traditional reliability model is too
conservative for analyzing the feasibility robustness accurately.

the manufacturing process [31], the uncertain design variabl@dexes ofz(1) and z(2) have different values, enabling
and parameters are modeled with triangular fuzzy variablegh® information in the entire uncertain space to be analyzed.

ZTp = (xy, — 0.09, 2, 2, +0.09), n=1,2,3,4,6,7

Therefore, the modified reliability model is more realistic for
analyzing the feasibility robustness.
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TABLE I: Analysis of feasibility robustness for constraigt  opystness by ensuring the achievement of the constraints at
Membership level _ Traditional model _ Modified model  the desired level, but it dose not consider the robustness perfor-

Feasibility robustness

a z(1) =2 z(l)  @2) mance of objective functions. From Table.ll, it can be observed
0.0 1.0000 1.0000 0.1047 00694 that the feasibility robustness of the deterministic solution is
0.1 1.0000 1.0000 0.0522 0.0127

weak. The solution obtained by the reliability-based design

0.2 0.0000 0.0000  0.0000 0.0000 h | fail ibili d ifi h .
03 00000 00000 00000 00000 NaS & lower failure possibility and satisfies the requirements
Interval possibilistic 0.4 00000 00000 00000 0.0000 Of 7 constraints. Note that the optimal solution of reliability-
failure indexes 05 0.0000 0.0000 0.0000 0.0000 based design is too conservative, leading to an increase in the
06 0.0000  0.0000 0.0000  0.0000 vehicle weight, which is uneconomic for practical applications.
0.7 0.0000 0.0000  0.0000 0.0000

The optimization performance in Table.ll shows that the robust

0.8 0.0000 0.0000 0.0000  0.0000 S .
09 00000 00000 00000 00000 CPliMization based on the Stackelb_erg—Nash game can provide
10 0.0000 00000 00000 00000 @ Solution not only with high feasibility robustness but also
Fuzzy possibilstic 01500 01500 0.0105  0.0047 with reasonable vehicle we.lght.
failure indexes To analyze the computational performance of the proposed

robust optimization method, a total of 20 independent runs
are conducted. The average execution time of proposed robust

4 T T T 30
% design is 365.54 seconds, which is much larger than that of
~ ¢ Follower the deterministic design (5.88 seconds). This is due to the

high computational cost of robustness analysis, including a
nested optimization structure. In the deterministic design, each
candidate only needs to calculate the values of its objective
function and constraints; while in the proposed robust design,
each candidate needs to evaluate its performance under fuzzy
uncertainties, including sensitive analysis at several member-

0 ‘ ‘ ‘ 2 ship levels.
5 10 15 20

Gnerations (Leader optimization)

I -
| T 0600000000

Follower's objective function value

Leader's objective function value

Fig. 6: Convergent trajectories of the optimization usinB. Case 2: Optimization for power scheduling in zinc elec-
leader-followers state transition algorithm trowinning process

Optimal scheduling of power usage is important in the in-
dustrial process. The zinc electrowinning process accounts for
eéo% of the total energy consumption of zinc hydrometallurgy.
gder the power time-of-use pricing policy, the production

The convergent trajectories of the optimization using lead
followers state transition algorithm are shown in Fig.6. It ¢
be observed that both the leader and follower can converge R . . :

. . g.o eration in different periods should be adjusted according to
stable values after several iterations. The leader can ach|ﬁ1e

higher satisfaction than its follower. Thus, the Ieader-followe{ € electricity price [32]. Due to the mcpmplete knowledge OT
o . : - . . e process model, some parameters in the power scheduling
state transition algorithm is able to efficiently find the optima

, L - optimization problem are uncertain. Therefore, we study the
solution with higher feasibility robustness. . T : -
power scheduling optimization problem to verify the feasibil-

TABLE II: Optimal solutions for vehicle side impact problemity of the proposed robust optimization method in complex
industrial processes.

Deterministic design Reliability-based design [31] Proposed robust design
(x1,22,23)  (0.5000,1.2257,0.5000)  (1.5000, 1.1640,1.0930)  (0.5900, 1.2600, 0.5900)
(x4, 5, 76) (1.2071, 0.8752, 1.1250) (1.2310, 2.2220, 0.6450) (1.4100, 2.3638, 0.5779)
)

Mixing cell

(7,738, 9 (0.4000,0.3450,0.1920)  (0.9440,0.3450,0.3450)  (0.4900, 0.3450, 0.1920) Leaching £
(I35, TIp4e) (0.0000,0.0107) (0.0000, 0.0000) (0.0000, 0.0041) e " Rectifier
(ITpew, T (0.0398,0.4984) (0.0000, 0.0253) (0.0058, 0.2299) = control system

) b B ——
(Tmpee T (0.0000, 0.0000) (0.0000, 0.0000) (0.0105, 0.0000) Spent O so&
(ITpe, TIp5e) (0.0000, 0.5471) (0.0000, 0.1810) (0.0000, 0.2213) clectrolyte
(Tmpege  TInew) (0.2026, 0.0967) (0.1624, 0.0000) (0.0155,0.0013) Mixed solution
E[f] 23,5860 36.1916 28.5927 ‘ Electrolysis cell
Y g, 1.3954 0.3687 0.4883

The comparison optimization results of deterministic design,
reliability-based design, and the robust design based on the
Stackelberg-Nash game are shown in Table.ll. The determin-
istic design applies the standard state transition algorithm with
the same parameter settings in [25] to search for the optimal
solution. As a traditional method to optimize the crashworthi- ectrolysis
ness of vehicle side impact, the deterministic design takes no 2ZnS04+2H,0 ==2Zn| +2H,80,+0,1

account of the fuzzy uncertainties in variables. The reliability-__ _ _ o
based design in [31] has strict requirements on feasibilit\'/:'g' 7: Electrolytic cell of zinc electrowinning process [32]

D Oxygen (0y)

O Metallic Zinc (Zn) Further
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A zinc electrowinning process includes several series pot-Using the robustness analysis and the Stackelberg-Nash
rooms and each potroom has several parallel electrolytiame strategy, the fuzzy robust optimization model for power
cells (shown in Fig.7). In order to minimize the electricityscheduling is formulated as:
charge {(-)) and satisfy the requirement of zinc daily output

(h(-)), the optimization model of power scheduling in zinc Leader: Hiiln V(s 251, 212, D))
electrowinning process is formulated as: Follower 1: ril}? E[f (@), 21,2 52, P)] (38)
3.7 Follower 2: min DI[f(z;, 1, xf2,D)]
min f(:v,p)ZJo—l—ZZPiTiVij (x,p)Li;j(x) e
st.  h(z,p) :Z Z dR;(z,p)T;L;j(x)="0 1
100 < :1311;6]501, 45 < x5 <60, 160 < x5 < 200 Z::
where  Vij(x,p)=N;(p1 — p2 1H(P39C3:11)—P4 In(psas;) 507
+pe1,i(pr+psTsi—poTa;) " Josel
+piolg i i+puizi) %:U;lo.s—
L;j(xz)=DBjsz1,; 20.4—
Ri(z,p)=pi2 exp(p13+pialg Il,i)I%;?I;?'Q =031
+(p15 exp(—pis+pi7lg $1,1')$2,ﬂ?;?'2 02
+p18+p19:68;?)’1x;} (37) o
d=1.2202g/Ah, 3:1,1311127 b=960tons %10 9‘20 §30 §4o 950 960 970 ‘980 *990 ‘1000 1010
T— [117 5’ 8]h Zinc daily output (tons)
P =0.5627 x [1.6,1.0,0.7]¥/kWh Z:qu j&g():onstraint values with candidate solutiand), z(2),

N =240, 240, 246, 192, 208, 208, 208]

B=(34,46,54,56, 56,57, 57]

p=[1.588,0.027,1.1025 x 10~*2,0.0135, 8.15,
6.2 x 107*,0.5931,0.0181,0.0313, Candidate solutions x(1) x(2) x(3)
0.0793,5 x 107%,1091.46, —4.06, Discrimination indexes  41.2126 19.1023 23.2362
2.8,0.0813,1.8,3.5,0.35, 2172.45],

TABLE lII: Analysis of feasibility robustness for constraint

To evaluate the feasibility robustness of candidate solu-
where the decision variables are the current density;)( tion for equality constraint in the power scheduling op-
the concentration oZn** (z5,), and the concentration of timization problem, the discrimination between constraint
H* (x3,) in the ith period; parametersp) are the model value and ideal value is analyzed. Given three candidate
coefficients based on the electrochemical reaction mechanigefutions (1) = (160, 500, 600, 60, 60, 60, 200, 200, 200),
and historical datay, is the capacity electricity charge with@(2) = (421, 484,462, 45, 50, 45,200,199, 161), andz(3) =
Jo = k.- o, wherek,. is a fixed electricity price and» (100,650,650, 60, 60, 60, 200, 200, 200), their constraint val-
is the maximum capacity of the transformery; means the ues are fuzzy variables which are shown in Fig.8, and their
electricity price of theith period;T; is the duration of theéth ~discrimination indexes are listed in Table.lll. It is obvious
period;V;; is the cell voltage of thgth plant in theith period; that the zinc daily output under candidatgl) is beyond
Li; is the current magnitude of the electrolysis process of thiee satisfactory range. The zinc daily output under candidate
jth plant during theth period;b is the ideal zinc daily output; =(2) is close to the ideal value, and the discrimination
d is the electrochemical equivalent of zing; is the current- indexes betweeh(z(2)) andb is the smallest. Therefore, the
efficiency during theth period;N; and B, are the numbers of proposed feasibility robustness analysis method is effective for
cells and plates in a cell of thgh plant; ands is the area of €valuating the uncertainties of fuzzy equality constraint.
the cathode plate. To account for the uncertainties in procesghe convergent trajectories of the leader-followers state
modeling, some of the parameters are modeled with triangulegnsition algorithm are shown in Fig.9. The optimization

fuzzy variables: method based on the Stackelberg-Nash game strategy can
converge to a solution with higher satisfaction of feasibility
P = (0.9 X pp,pn, 1.1 X pp),n = 3,4,6,...,11 robustness (leader) and good satisfaction of optimality robust-

. _ ness (follower 1 and follower 2).
p~" = (0-99 %, pn, LOL X pn),m = 12,17 The results of the deterministic optimization, the reliability-
Pn = (0.98 X pn,pp, 1.02 X py ), n = 13,16, 19 based optimization, and the proposed robust optimization are
b = (945,960, 975). shown in Table.lV. The fuzzy variables d¢fx) and h(x)
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X10° are 9.72 seconds, 752.02 seconds, and 1116.02 seconds, re-
spectively. In the deterministic design, the candidate solution
dose not consider the impact of uncertainties. In the reliability-
based design, each candidate needs to calculate its objective
function value and analyze the performance of constraints
under fuzzy uncertainties. In the proposed robust design,
each candidate needs to evaluate the performance of both
objective and constraints under fuzzy uncertainties. Therefore,
the computational cost of the proposed robust design is higher
than that of other methods.

T T T T T T T T T
—%¥— Leader 7
\ —+ Follower 1
120 H\ —¢- Follower 2| 42

140

100 | 4
;_4’,4»4—-&—#4—4-—4»4—+—+~4—+—+4—+7+~—11.5
80 1
60 - 1

a0t J

Leader's objective function value
Followers' objective function value

20 ¥
===

<

2 4 6 8 10 12 14
Gnerations (Leader optimization)

16

VI. CONCLUSION

This paper presented a new robust optimization method
to solve the constrained optimization problem with fuzzy
TABLE IV: Optimal solutions for power scheduling in zincvariables. A fuzzy expectation-entropy model is established
electrowinning process to evaluate the optimality robustness, while a comprehensive
analysis method is proposed to assess the feasibility robust-

Proposed robust design

(100, 650, 650) ness. An optimization framework with the Stackelberg-Nash

Fig. 9: Convergent trajectories of the optimization using
leader-followers state transition algorithm

Deterministic design
(117, 638, 598)

Reliability-based design
(334, 226, 650)

(z1,1,®1,2,21,3)

(2,1, 32,2, 02,3) (60, 60, 60) (60,60, 45) (60,56, 60) game strategy is developed to analyze the hierarchical rela-
(xs.l,?[,fz],xm (Igfé ;71 113? (163; 52902 1132) (19476 ;(;JOX igg) tionsh_ip_in objecti_ves: The state transition algorithm is giyen
DI} 5j71(6? 108 5 8382 » 104 7754 % 104 to optlmlz_e the obje_c_uv_es for Iead_er and foll_owers sequentially
ot 20.6371 18.9673 20.6256 and obtain a equilibrium solution. Practical examples on
Time(second) 1055.0934 1116.0213 vehicle side impact design and power scheduling design are
used to verify the effectiveness of the proposed new design
. techniques. The experimental results showed that the obtained
i solution not only has higher satisfaction rate on feasibility
Tt robustness, but also can guarantee the optimality robustness.
I In the future, we will develop effective robustness analysis
. P . methods to reduce computational costs, and consider the robust
by optimization problem with complicated uncertainties.
I
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