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Abstract—In this paper, the problem of robust optimization
is considered for dynamical systems with both constraints and
uncertainties. Conditions are established to ensure the existence
of solutions to the problem with both robust optimality and
feasibility. The objective performance with respect to fuzzy
uncertainties is evaluated based on the expectation-entropy
model. A feasibility robustness analysis method is proposed to
handle the uncertainties in the constraints. Using the hierarchy
structure in robust design, the optimization framework based
on Stackelberg-Nash game is developed. A leader-followers state
transition algorithm is designed to search for the equilibrium
solution. Two application examples are given to demonstrate
that the proposed robust optimization method can accurately
evaluate the robustness performance and successfully search for
a compromise solution.

Index Terms—Constrained robust optimization, fuzzy variable,
feasibility robustness analysis, Stackelberg-Nash game, state tran-
sition algorithm

I. I NTRODUCTION

FUzzy uncertainties are unavoidable in practical engineer-
ing problems due to the vagueness of subjective judgment

and the impreciseness of objective knowledge [1]. As a typical
representative of uncertainty measurement, the robustness has
been an important concept in structure design and process
optimization.

Robust optimization theory is developed to find solutions
that are insensitive to uncertainties. In order to analyze the
sensitivity region of candidates, the uncertain parameter has
been treated as an interval variable, and the nominal value
and the variation value of objectives and constraints have
been estimated [2]. This type of method can guarantee that
the solution is feasible for all admissible values of uncertain
parameters and the objective function has robust performance
[3]. However, it is too conservative to obtain a solution that is
insensitive to all uncertainties. This leads to a trade-off model
(multi-objective model) to balance the robustness and the cost
of robustness [4][5]. Here, the robust optimization method
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makes use of the possibility characteristics of fuzzy uncer-
tainty and optimizes the average performance of objectives
and constraints. For solving practical optimization problems,
these methods can provide relatively robust solution that is
feasible and close to optimal for most of admissible uncertain
parameters.

The trade-off model in a realistic robust optimization con-
siders both optimality robustness and feasibility robustness.
For fuzzy objective function, the optimality robustness is
evaluated based on the expectation-entropy model [6]. The
fuzzy expectation can represent the average performance of
the objective function, and the fuzzy entropy can quantify
the uncertainty of the objective performance [7]. For fuzzy
inequality constraints, the reliability assessment model is es-
tablished to measure the safety possibility [8]. The traditional
reliability analysis treats a solution as safety state only if
all its possible constraint values meet the requirements. This
operation makes the reliability analysis results too conservative
to accurately evaluate constraints performance [9]. Wang et
al. modified the fuzzy reliability model based on the interval
ranking strategy, and made it more reliable to analyze various
fuzzy systems [10]. For fuzzy equality constraints, previous
studies focused on linear programming and transformed the
fuzzy equality constraints to the crisp ones using the measure
of the similarity [11][12]. In order to handle fuzzy constraint
in general optimization problem, it is necessary to design
a comprehensive analysis method to evaluate the feasibility
robustness for inequality constraints and equality constraints.

In game theory, there are three major strategies used when
searching for a compromise solution considering both opti-
mality robustness and feasibility robustness [13][14][15][16]:
the Pareto-based strategy, the Nash-based strategy, and the
Stackelberg-based strategy. Let each player correspond to
a metric to be optimized. The Pareto-based strategy is a
cooperative game in which players have knowledge of the
decisions made by other players. Through communication
and cooperation among the players, a set of Pareto optimal
solutions can be obtained. This Pareto optimal solution set has
no preference for the objective function. Decision makers will
have to select the final optimal solution from the Pareto-front.
The Nash-based strategy is a non-cooperative game in which
players have equal status and act independently. A steady
Nash equilibrium will be reached when each player cannot
further improve its own outcome due to the constraint of the
other players’ decision. The Stackelberg-based strategy is also
a non-cooperative game in which players have a hierarchy
of leaders and followers. The leaders could anticipate the
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followers’ reaction and optimize their decision accordingly,
while the followers can only optimize their strategies based
on the leaders’ decision.

When evaluating the solution quality for a constrained
robust optimization problem, feasibility robustness is more
important than optimality robustness [17]. In the context of
finding a realistic robust solution for the fuzzy optimization
problem, the feasibility robustness is regarded as the leader
objective and the optimality robustness is taken as the fol-
lower objective. Since there are two metrics (expectation and
entropy) to evaluate the optimality robustness, the Nash-based
strategy can be used to handle the relationship between two
followers. Therefore, the Stackelberg-Nash game is investi-
gated to optimize the fuzzy problem with one-leader and two-
follower strategies, aiming to find a solution with preference
towards feasibility robustness.

The novelty and contribution of this study is threefold:
(1) a comprehensive feasibility robustness analysis method is
proposed, which includes the possibilistic safety (failure) index
for inequality constraints and the discrimination index for
equality constraints; (2) a Stackelberg-Nash based robust opti-
mization model is established, which can not only subjectively
choose the feasibility robustness as a priority target, but also
objectively balance the trade-off between robustness metrics;
(3) a leader-followers state transition algorithm is designed to
search for the Stackelberg-Nash equilibrium. The algorithm
overcomes the nonlinearity and nonconvexity of the players’
objective function. Two engineering optimization problems
with fuzzy parameters are used to verify the effectiveness of
the proposed robust optimization method.

The remainder of this paper is organized as follows. Section
2 describes the robust optimization problem with fuzzy param-
eters. A comprehensive feasibility robustness analysis method
is introduced in Section 3. Section 4 provides the framework
of robust optimization method based on the Stackelberg-Nash
game. Applications of the robust optimization method in using
a vehicle side impact design and a power scheduling design
are presented in Section 5. Section 6 concludes this paper and
offers some possible future research directions.

II. PROBLEM FORMULATION

Consider a general constrained optimization problem:

Problem P1

min
x∈Rn

f (x, p̃)

s.t. gj(x, p̃) ≤ ãj , j = 1, · · · , q,

hj(x, p̃) = b̃j, j = 1, · · · , r,

wheref (x, p̃) is the objective function;x = (x1, x2, . . . , xn)
is a n-dimensional decision variable bounded by its lower
and upper limits (xl ≤ x ≤ xu); p̃ is the parameter vector,
which could be fuzzy variable and uses membership function
to represent the degree of uncertainty;g(x, p̃) is the set of
q inequality constraints andh(x, p̃) is the set ofr equality
constraints;̃a andb̃ are the right hand side of each constraint,
which can also be fuzzy variables.

To analyze the uncertainty in both objective function and
constraint functions, in this paper, ProblemP1 will be trans-

formed to a fuzzy robust optimization problem considering
both optimality robustness and feasibility robustness.

A. Optimality robustness

Optimality robustness evaluates the sensitivity of the objec-
tive function to uncertainties. For (almost) all possible values
of uncertain parameters, the objective function value should
remain close to the optimal value or have little deviation
from the optimal value [4]. Therefore, to handle the fuzzy
uncertainties in objective function, the expectation-entropy
model is studied to analyze the optimality robustness.

Presented here are some basic definitions of fuzzy variable
based on uncertainty theory [7].

Definition 1. Let β̃ denote a fuzzy variable with assigned
membership functionµ(t) and z be a real number, then the
credibility Cr{·} that event “̃β ≤ z” will occur is defined by

Cr{β̃ ≤ z} =
1

2
(sup
t≤z

µ(t) + 1− sup
t>z

µ(t)). (1)

The fuzzy event must hold if its credibility value is 1 and
fail if the credibility value is 0.

Definition 2. Let β̃ denote a fuzzy variable. The expected
value of β̃ is defined by

E[β̃] =

∫ +∞

0

Cr{β̃ ≥ z}dz −
∫ 0

−∞

Cr{β̃ ≤ z}dz. (2)

Definition 3. Let β̃ denote a fuzzy variable. The entropy of
β̃ is defined by

D[β̃] =

∫ +∞

−∞

(−Cr{β̃ = z} lnCr{β̃ = z})dz

+

∫ +∞

−∞

(−(1−Cr{β̃=z}) ln(1−Cr{β̃=z}))dz.

(3)

The expected valueE[·] represents the average value of
a fuzzy variable, and the entropy valueD[·] provides a
quantitative measure of the uncertainty (variability) associated
with fuzzy variable [18]. Based on the fuzzy entropy model,
we can estimate the fuzziness resulting from information
deficiency caused by the inability to accurately predict the
specified values, so as to evaluate the robustness performance
of objective functions. The smaller the fuzzy entropy is, the
less fuzziness of the variable.

Based on the definitions of fuzzy expectation and fuzzy
entropy, the fuzzy objective function in ProblemP1 can be
reformulated to evaluate the optimality robustness via:







min
x∈Rn

E[f (x, p̃)], (4)

min
x∈Rn

D[f (x, p̃)]. (5)

The aim of (4) is to find a solution with the best average
performance; and the aim of (5) is to minimize the fuzziness
of the performance. With the above two functions, the mini-
mization of the uncertain functionf (·) can be transformed to
minimize two deterministic quality indexes.
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B. Feasibility robustness

Feasibility robustness provides a measure of constraints’
uncertainty. For (almost) all possible values of uncertain
parameters, the solution should remain feasible [4]. In order
to evaluate the fuzzy uncertainties of the constraints, the fuzzy
reliability based on possibilistic safety index is analyzed.

For inequality constraints, let us consider a constraint
g(x, p̃) ≤ a, whose parameter̃p is a fuzzy variable and
right hand side parametera is a real number. With the fuzzy
parameter̃p, the constraint valueG = g(x, p̃) is also a fuzzy
variable and its membership functionµG can be calculated
based onα-cut technique [19]. Fig.1 gives an example of the
order relation betweenG anda, where the variablet represents
the possible constraint value.

Safety domain Failure domain

Fig. 1: Order relation amongG, G′ anda

For any membership levelα ∈ [0, 1], the cut setGα =
{t|µG(t) ≥ α} is an interval defined as[G−α, G+α]. The
critical condition G = g(x, p̃) = a divides the variable
space into two parts: the safety domainΩs with g(x, p̃) < a
and the failure domainΩf with g(x, p̃) > a. If the lower
bound of the cut set satisfiesG−α > a, then all possible
values ofG at membership levelα are bigger thana, and
the constraint fails. Conversely, if the upper bound of the cut
set satisfiesG+α < a, then all possible values ofG satisfy
the constraint and remain safe. For the transition domain with
G−α < a < G+α, the minimum membership levelα∗ is
defined to represent the safety state [10]:

α∗ = inf
G+α<a,α∈[0,1]

α. (6)

Based on the traditional fuzzy reliability theory [9], the
interval possibilistic safety indexds(α) under different mem-
bership levels can be defined as

ds(α) = Poss{Gα = g(x, p̃α) < a} =

{

0 if α < α∗

1 if α ≥ α∗
(7)

where Poss{·} represents the possibility of the event{·}, the
interval possibilistic failure index isdf (α) = 1 − ds(α).
By aggregating all possibilities under different membership
levels, the final fuzzy possibilistic safety indexΠs and fuzzy
possibilistic failure indexΠf can be calculated as:

Πs=Poss{G=g(x, p̃)≤a}=

∫ 1

0

ds(α)dα=1− α∗, (8)

Πf =Poss{G=g(x, p̃)>a}=

∫ 1

0

df (α)dα=α∗. (9)

In order to find a solution with high feasibility robustness,
the fuzzy possibilistic safety index should be maximized or
the fuzzy possibilistic failure index should be minimized.
Therefore, the inequality constraints with fuzzy uncertainties
can be transformed to the following deterministic forms:

max
x∈Rn

q
∑

i=1

Πs,i[gi(x, p̃)] or min
x∈Rn

q
∑

i=1

Πf,i[gi(x, p̃)]. (10)

It should be noted that the state of constraint value in
transition domain is either “safe” or “failure”, which ignores
additional possibility information. For example, as illustrated
in Fig.1, the fuzzy variablesG andG′ have the sameα∗-cut
set. According to (8), even if fuzzy variables have different
membership functions, their fuzzy possibilistic safety indexes
will not stay same. Therefore, the possibilistic safety index
in transition state should be modified to accurate qualify the
fuzzy information.

To our knowledge, there are few studies on the uncer-
tainty measurement for nonlinear fuzzy equality constraint.
Therefore, in next section, we will provide a comprehensive
feasibility robustness analysis method for various of fuzzy
constraints.

III. C OMPREHENSIVE FEASIBILITY ROBUSTNESS

ANALYSIS METHOD

In ProblemP1, there are inequality constraints and equality
constraints, and both sides of the constraint could contain
fuzzy parameters. Fig.2 gives six kinds of constraints with
fuzzy uncertainties, in which̃p, ã, and b̃ are fuzzy variables.
With fuzzy parameter̃p, the left hand side of the constraint is
also an fuzzy variable, and its membership function is assumed
to be triangular shape. With fuzzy right hand side parameters
ã and b̃ (assumed to be triangular fuzzy variables), there are
different safety levels for different constraint values. The red
color in Fig.2 represents the safety domain, and the darker the
color, the safer the constraint value.

(1) (2) (3)

(4) (5) (6)

Fig. 2: Description of fuzzy inequality constraint and equality
constraint

Based on the characteristics of different constraints in Fig.2,
we propose a comprehensive analysis method to evaluate the
feasibility robustness.
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A. Feasibility robustness analysis for inequality constraint

To find a solution with high possibilistic safety index,
the traditional fuzzy reliability theory is found to be too
conservative to accurately measure the safety index. Thus,
an analysis method based on the interval ranking strategy is
proposed to evaluate the feasibility robustness for inequality
constraint.

Under any membership levelα ∈ [0, 1], the fuzzy vari-
able can be transformed to an interval variable. Based on
the interval possibility theory [9] [20], the possibility that
Gα = g(x, p̃α) = [G−α, G+α] is larger thañaα = [ã−α, ã+α]
can be calculated by

Poss{Gα<ãα}=
max(0, wGα+wãα−max(0, G+α−ã−α))

wGα+wãα

. (11)

wherewGα = G+α − G−α andwãα = ã+α − ã−α On this
basis, the possibilistic index for inequality constraints in Fig.2
(cases 1, 2, and 3) can be analyzed as:

• Case 1: the left hand side parameter (p̃) is a fuzzy
number, and the right hand side parameter (a) is a real
number. We only accept constraint value less thana as a
safe state. The possibilistic safety index and possibilistic
failure index are modified to:

Πnew
s = Poss{G = g(x, p̃) ≤ a}

=

∫ 1

0

max(0, wGα−max(0, G+α− a))

wGα

dα,
(12)

Πnew
f = Poss{G = g(x, p̃) > a}

=

∫ 1

0

max(0, wGα−max(0, a−G−α))

wGα

dα.
(13)

• Case 2: the right hand side parameter (ã) is a fuzzy
number, and the left hand side parameter (p) is a real
number. The safety level between[ã−α, ã+α] depends on
the membership level of̃a. The possibilistic safety index
and possibilistic failure index are modified to:

Πnew
s = Poss{G = g(x,p) ≤ ã}

=

∫ 1

0

max(0, wãα−max(0, G−ã−α))

wãα

dα,
(14)

Πnew
f = Poss{G = g(x,p) >ã−α}

=

∫ 1

0

max(0, wãα−max(0, a+α −G))

wãα

dα.
(15)

• Case 3: both sides parameters (p̃ and ã) are fuzzy num-
bers, and the possibilistic safety index and possibilistic
failure index are modified to:

Πnew
s =Poss{G = g(x, p̃) ≤ ã}

=

∫ 1

0

max(0,wGα+wãα−max(0, G+α−ã−α))

wGα+wãα

dα,
(16)

Πnew
f =Poss{G = g(x, p̃) >ã−α}

=

∫ 1

0

max(0,wGα+wãα−max(0, ã+α−G−α))

wGα+wãα

dα.
(17)

Compared with the traditional reliability analysis in (8) and
(9), the modified possibilistic safety index and possibilistic
failure index can make use of the uncertain information more
efficiently, which is more realistic in engineering practice [9].

Then, based on the analysis of the possibility that the
constraint value (G) is greater than or less than the target
value (̃a), in robust optimization process, we would like to
select a solution with a smaller possibilistic failure index
or larger possibilistic safety index, so that the possibility
of satisfying the inequality constraints is higher. The fuzzy
inequality constraints in ProblemP1 can be transformed to
the following deterministic forms:

max
x∈Rn

q
∑

i=1

Πnew
s,i [gi(x, p̃)] or min

x∈Rn

q
∑

i=1

Πnew
f,i [gi(x, p̃)]. (18)

B. Feasibility robustness analysis for equality constraint

In order to improve the feasibility robustness, we want
to find a solution whose equality constraint value is within
the acceptable range and as close as possible to the ideal
value. Cross-entropy can measure the degree of discrimination
between two fuzzy variables. Therefore, we introduce the
concept of fuzzy cross-entropy to evaluate the feasibility
robustness of equality constraint. The definition of fuzzy cross-
entropy [21][22] is as follows:

Definition 4. Let β̃1 and β̃2 denote fuzzy variables with
assigned membership functionsµ1 andµ2, respectively, then
the cross-entropy of̃β1 from β̃2 is defined by

C(β̃1, β̃2)=

∫ +∞

−∞

µ1(t) log2
µ1(t)

1
2 (µ1(t)+µ2(t))

dt

+

∫ +∞

−∞

(1−µ1(t)) log2
1−µ1(t)

1− 1
2 (µ1(t)+µ2(t))

dt.

(19)

The cross-entropyC(β̃1, β̃2) is not symmetric with respect
to its arguments, and a symmetric cross-entropy can be con-
structed as:

I(β̃1, β̃2) = C(β̃1, β̃2) + C(β̃2, β̃1). (20)

According to Shannon’s inequality, it is easy to prove that
I(β̃1, β̃2) ≥ 0, where the equality holds if and only if̃β1 = β̃2.

Then, the discrimination betweenH = h(x, p̃) and b̃ in
Fig.2 (cases 4, 5, and 6) can be analyzed as:

• Case 4: the left hand side parameter (p̃) is a fuzzy num-
ber, and the right hand side parameter (b) is a real number.
To measure the distance between the constraint value
H = h(x, p̃) and the ideal valueb, the discrimination
index based on symmetric cross-entropy can be calculated
as:

Ψ = I(H, b) = C(h(x, p̃), b) + C(b, h(x, p̃)), (21)

where the membership function of real numberb can be
considered as

µb(t) =

{

1 if t = b

0 if t 6= b.

• Case 5: the right hand side parameter (b̃) is a fuzzy
number, and the left hand side parameter (p) is a real
number. The ideal constraint value isb̃1, and the satisfac-
tion level between[b̃−0, b̃+0] depends on the membership
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level of b̃. We divide the fuzzy parameter̃b into two
parts: the lower bound set̃bl = [b̃−0, b̃1] and upper
bound set̃bu = [b̃1, b̃+0]. The discrimination index should
consider not only the distance from ideal value, but also
the satisfaction of the boundary, which can be calculated
as:

Ψ = I(H, b̃1) + Poss{H<b̃l}+ Poss{H>b̃u}, (22)

where the Poss{H < b̃l} and Poss{H > b̃u} can be
obtained based on the analysis in Case 2.

• Case 6: both sides parameters (p̃ and b̃) are fuzzy
numbers, and the discrimination index can be calculated
as:

Ψ = I(H, b̃1) + Poss{H<b̃l}+ Poss{H>b̃u}, (23)

where the Poss{H < b̃l} and Poss{H > b̃u} can be
obtained based on the analysis in Case 3.

From the above analysis about the closeness of the con-
straint value (H) to the target value (̃b), in robust optimization
process, we will select a solution with a smaller discrimination
index, so that the equality constraint value is not only closer
to the ideal value but also with higher possibility to be within
the acceptance range. Thus, the fuzzy equality constraints in
ProblemP1 can be transformed to:

min
x∈Rn

∑r

j=1 Ψj [hj(x, p̃)] (24)

The robustness analyses for inequality constraints (18) and
equality constraints (24) are of different dimensional orders.
To emphasize both indices, a normalization procedure [2] is
applied to transform the constraints in ProblemP1 to:

min
x∈Rn

(1− ω)

q
∑

i=1

Πnew
f,i [gi(x, p̃)]

max
i=1,...,q

{Πnew
f,i [gi(x, p̃)]}

+ ω

r
∑

j=1

Ψj [hj(x, p̃)]
max

j=1,...,r
{Ψj[hj(x, p̃)]}

(25)

whereω is a weighting factor;Πnew
f,i measures the possibility

of failure to satisfy an inequality constraint;Ψj is used to
evaluate the discrimination between the equality constraint
value and the ideal value. The value forω is adjusted based on
the complexity of the constraints in the optimization problem.

Based on the transformation models in (4), (5), and (25),
the fuzzy robust optimization problem can be formulated as:

Problem P2



















































min
x∈Rn

E[f (x, p̃)]

min
x∈Rn

D[f (x, p̃)]

min
x∈Rn

(1 − ω)

q
∑

i=1

Πnew
f,i [gi(x, p̃)]

max
i=1,...,q

{Πnew
f,i [gi(x, p̃)]}

+ ω

r
∑

j=1

Ψj[hj(x, p̃)]

max
j=1,...,r

{Ψj[hj(x, p̃)]}
.

ProblemP2 is a multi-objective optimization problem, in
which both optimality robustness and feasibility robustness

are evaluated simultaneously. In most practical applications,
the optimal solution for the constrained optimization problem
is the candidate with the optimal objective function among the
feasible solutions that satisfy the constraints. Therefore, in this
paper, the feasibility robustness of a solution is more important
than its optimality robustness. Considering the hierarchy be-
tween the feasibility robustness and the optimality robustness,
we propose a game-theoretic optimization framework to rank
the priorities of these three objective functions.

IV. OPTIMIZATION METHOD BASED ON

STACKELBERG-NASH GAME

Stackelberg-Nash game, as a noncooperative game strategy,
involves one leader and several followers of equal status
and is well suited for hierarchical decision-making modeling
[15][23]. The leader (higher-level objective) could anticipate
the followers’ (lower-level objective) reaction and optimize
its decision accordingly. After observing leader’s play, the
followers could optimize their objectives and reach a Nash
equilibrium [24]. Considering that the objectives in Problem
P2 have different priorities, the optimization method based on
the Stackelberg-Nash game is derived in this section.

A. Stackelberg-Nash game

Consider anm + 1 player game with one leader andm
followers. The payoff functions of leader and followers are
represented asf l and f fi(i = 1, . . . ,m), respectively. The
search space of decision variable (x ∈ R) consists of the
leader’s search space (xl ∈ Rl) and the followers’ search space
(xfi ∈ Rfi, i = 1, . . . ,m). The multi-objective optimization
problem based on the Stackelberg-Nash game can be defined
by:































Leader: min
xl ∈Rl

f l(xl,xf1, . . . ,xfm)

Follower 1: min
xf1∈Rf1

f f1(xl,xf1, . . . ,xfm)

· · ·

Followerm : min
xfm∈Rfm

f fm(xl,xf1, . . . ,xfm).

(26)

A Stackelberg-Nash equilibriumx∗ = (x∗
l ,x

∗
f1, . . . ,x

∗
fm)

should satisfy the following conditions:

f l(x
∗
l ,x

∗
f1, . . . ,x

∗
fm)= inf

xl∈Rl

f l(xl,x
∗
f1(xl),. . .,x

∗
fm(xl)), (27)

where (x∗
f1(xl), . . . ,x

∗
fm(xl)) are the followers’ reaction

functions coming from the followers’ Nash equilibrium:


















ff1(x
∗
l,x

∗
f1,. . .,x

∗
fm)= inf

xf1∈Rf1

f f1(x
∗
l,xf1,x

∗
f2,. . .,x

∗
fm)

· · ·

ffm(x∗
l,x

∗
f1,. . .,x

∗
fm)= inf

xfm∈Rfm
f fm(x∗

l,x
∗
f1,x

∗
f2,. . .,xfm).

(28)

In the context of the Nash equilibrium, it is assumed that each
player knows the equilibrium strategies of others, and that
one player cannot benefit from unilaterally changing its own
strategy.
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xfm

Nash Game

Leader

xl

xf1(xl), xf2(xl), xfm(xl)

Fig. 3: Information flow of the Stackelberg-Nash game

Then, the leader and followers can find their optimal solu-
tion x∗ = (x∗

l ,x
∗
f1, . . . ,x

∗
fm) by solving

Df l
Dxl

∣

∣

∣

∣

x
∗

=
∂f l
∂xl

∣

∣

∣

∣

x
∗

+
∑m

i=1
∂f l
∂xfi

∂xfi

∂xl

∣

∣

∣

∣

(x∗

=0, (29)

and

∂f fi
∂xfi

∣

∣

∣

∣

x
∗

= 0, i = 1, . . . ,m. (30)

The information flow of the Stackelberg-Nash game is
shown in Fig.3. The leader provides the decision informa-
tion xl to the followers. Each follower passes its decision
to others and also receives the decision of other followers.
After the followers reaching the Nash equilibrium, the leader
will receive the reaction information from the followers. The
reaction functions(x∗

f1(xl), . . . ,x
∗
fm(xl)) can be computed

or approximated by performing a sensitivity analysis [15] that
introduces a small change inxl.

Based on the Stackelberg-Nash game strategy, ProblemP2
can be transformed to:

Problem P3























































Leader:min
xl∈Rl

(1−ω)

q
∑

i=1

Πnew
f,i [gi(xl,xf1,xf2, p̃)]

max
i=1,...,q

{Πnew
f,i [gi(xl,xf1,xf2,p̃)]}

+ω

r
∑

j=1

Ψj[hj(xl,xf1,xf2, p̃)]

max
j=1,...,r

{Ψj[hj(xl,xf1,xf2, p̃)]}

Follower 1: min
xf1∈Rf1

E[f (xl,xf1,xf2, p̃)]

Follower 2: min
xf2∈Rf2

D[f (xl,xf1,xf2, p̃)].

B. Leader-followers state transition algorithm

The state transition algorithm (STA) [25][26][27] is a global
optimization method. It consists of four stochastic search
operators. The main idea behind the STA method is the control
theory of state transition and state space representation.

Given a solutionxk, the candidates can be generated by the
following four operators: Rotation transformation:

xk+1=xk+η1
1

‖xk‖2
R1x

k, (31)

Translation transformation:

xk+1=xk+η2R2
xk−xk−1

‖xk−xk−1‖2
, (32)

Expansion transformation:

xk+1=xk+η3R3x
k, (33)

Axesion transformation:

xk+1=xk+η4R4x
k, (34)

where k is the number of iterations; parametersη1, η2, η3,
andη4 are rotation factor, translation factor, expansion factor,
and axesion factor, respectively, which can control the size of
search range; the matrixesR1, R2, R3, andR4 have special
elements that can control the shape of search range. More
specifically, the elements ofR1 are uniformly distributed
random variables defined in the interval[−1, 1]; the elements
of R2 are uniformly distributed random variable defined in
the interval [0, 1]; R3 is a random diagonal matrix with its
elements obeying the Gaussian distribution; andR4 is a ran-
dom diagonal matrix with its elements obeying the Gaussian
distribution, and only one random position has nonzero value
[25].

To solve the optimization problem in ProblemP3, we design
a leader-followers state transition algorithm. First, the state
transition algorithm runs sequentially on different followers to
find a Nash equilibrium, which is shown in Algorithm 1. In
order to converge to a Nash equilibrium, a sufficient number
of iterationsIterf is required.

Algorithm 1 Followers-based state transition algorithm

Input:
Iterf : maximum number of iterations for followers’ opti-
mization
(x0

l ,x
0
f1,x

0
f2): initial solution

Output:
(x∗

f1,x
∗
f2): Nash equilibrium

1: for k = 1 to Iterf do
2: Generating candidate solutions for followers using

state transition operators in (31) to (34)
3: Updating the decisionxk

f1 of follower 1 f f1(x
0
l ,x

k
f1,

x0
f2) by STA

Authorized licensed use limited to: Central South University. Downloaded on May 11,2021 at 12:57:51 UTC from IEEE Xplore.  Restrictions apply. 



1063-6706 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2020.3025697, IEEE
Transactions on Fuzzy Systems

JOURNAL OF LATEX CLASS FILES 7

4: Updating the decisionxk
f2 of follower 2 f f2(x

0
l ,x

0
f1,

xk
f2) by STA

5: x0
f1 ← xk

f1

6: x0
f2 ← xk

f2

7: end for
8: (x∗

f1,x
∗
f2)← (x

Iterf
f1 ,x

Iterf
f2 )

Then, the leader’s optimization procedure is shown in
Algorithm 2. The reaction information∂xf1

∂xl
and ∂xf2

∂xl
can

be computed by perturbingxl and repeating the followers
optimization.

Algorithm 2 Leader-based state transition algorithm

Input:
Iterl: maximum number of iterations for leader’s optimiza-
tion
(x0

l ,x
0
f1,x

0
f2): initial solution

Output:
(x∗

l ,x
∗
f1,x

∗
f2): Stackelberg-Nash equilibrium

1: for k = 1 to Iterl do
2: Obtaining the reaction information∂xf1

∂xl
,
∂xf2

∂xl
from

Algorithm 1
3: Generating candidate solutions for leader using state

transition operators (31) to (34)
4: xk

f1 ← xk−1
f1 +

∂xf1

∂xl
(xk

l − xk−1
l )

5: xk
f2 ← xk−1

f2 +
∂xf2

∂xl
(xk

l − xk−1
l )

6: Updating the decisionxk
l of leader f l(x

k
l ,x

k
f1,x

k
f2)

by STA
7: end for
8: (x∗

l ,x
∗
f1,x

∗
f2)← (xIterl

l ,xIterl
f1 ,xIterl

f2 )

Finally, with the leader and followers’ optimization proce-
dures, the robust optimization problem is solved hierarchically
and the Stackelberg-Nash equilibrium is obtained achieve
better feasibility robustness.

C. Optimization framework

The framework of the fuzzy robust optimization method
based on the Stackelberg-Nash game (with one leader and two
followers) is shown in Fig.4. First, in order to quantitatively
analyze the optimality robustness and feasibility robustness
of ProblemP1, the expectation-entropy model is established
to evaluate the performance of fuzzy objective function, and
a comprehensive feasibility robustness analysis method is
proposed to evaluate the performance of fuzzy constraints.
Then, the optimization problem with fuzzy parameters is trans-
formed to a multi-objective optimization problem (Problem
P2). Considering that the feasibility robustness has higher
priority than the optimality robustness, the Stackelberg-Nash
game is introduced to establish an optimization problem with
one leader and two followers (ProblemP3). Finally, the leader-
followers state transition algorithm is conducted to search for
a Stackelberg-Nash equilibrium.

V. EXAMPLES AND RESULTS

In this section, the effectiveness of the fuzzy robust opti-
mization method based on the Stackelberg-Nash game is veri-
fied via two practical engineering applications: (i) optimization

for crashworthiness of vehicle side impact, and (ii) optimiza-
tion for power scheduling. The optimization framework shown
in Fig.4 is used to obtain the equilibrium solution considering
both feasibility robustness and optimality robustness.

In both examples, the parameter settings of state transition
algorithm are the same as in [25][26][27]. The algorithm
can solve the optimization problems for such applications as
benchmarks, image segmentation, and process control. The
transformation factors are:η1 = 1, η2 = 1, η3 = 1, η4 = 1.
The search enforcement (SE) is 30 and iteration number is 15.
The maximum numbers of iteration for followers’ optimization
and leader’s optimization are both set to 20. The decision
variables for the leader and followers are assigned based
on their spatial distances [28]. All results are obtained by
MATLAB R2016a software.

A. Case 1: Optimization for crashworthiness of vehicle side
impact

The crashworthiness of vehicle side impact is important
in the structure evaluation system [29]. The existence of
uncertainties in manufacturing process calls for a reliable and
robust design. Therefore, we study the optimization of vehicle
side impact with fuzzy uncertainties, aiming to illustrate the
effectiveness of the proposed robust optimization method.

The vehicle side impact model (shown in Fig.5) is designed
to minimize the vehicle weight (f (·)) as well as meet internal
and regulated side impact constraints (g(·)) specified by the
vehicle safety requirements [19]:

min
x

f (x)=1.98+4.90x1+6.67x2+6.98x3+4.01x4

+1.78x5+2.73x7

s.t. g1(x,p)=1.16−0.3717x2x4−0.00931x2p1

−0.484x3x9+0.01343x6p1≤1

g2(x,p) = 28.98+3.818x3−4.2x1x2+0.0207x5p1

+6.63x6x9−7.7x7x8+0.32x9p1≤32

g3(x,p) = 33.86+2.95x3+0.1792p1−5.057x1x2

−11x2x8−0.0215x5p1−9.98x7x8

+22x8x9≤32

g4(x,p) = 46.36−9.9x2−12.9x1x8

+0.1107x3p1 ≤ 32

g5(x,p) = 0.261−0.0159x1x2+0.0008757x5p1

−0.019x2x7+0.0144x3x5−0.188x1x8

+0.08045x6x9+0.00139x8p2

+0.00001575p1p2≤0.32 (35)

g6(x,p) = 0.214+0.00817x5−0.131x1x8

−0.0704x1x9+0.0007715x5p1−0.018x2x7

+0.0208x3x8+0.121x3x9−0.00364x5x6

−0.02x2
2−0.0005354x6p1+0.00121x8p2

+0.00184x9p1+0.03099x2x6≤0.32

g7(x,p) = 0.74−0.61x2−0.163x3x8+0.001232x3p1

−0.166x7x9+0.227x2
2≤0.32

g8(x,p) = 4.72−0.5x4−0.19x2x3−0.0122x4p1
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Fig. 4: Framework of fuzzy robust optimization based on the Stackelberg-Nash game

Fig. 5: Vehicle side impact model [30]

+0.009325x6p1+0.000191p22≤4

g9(x,p) = 10.58−0.0674x1x2+0.02054x3p1

−1.95x2x8−0.0198x4p1+0.028x6p1≤9.9

g10(x,p) = 16.45−0.843x5x6+0.0432x9p1

−0.489x3x7−0.0556x9p2−0.000786p
2
2≤15.7

0.5 ≤ xn ≤ 1.5 (n = 1, 2, . . . , 7)

xn = 0.192 or 0.345 (n = 8, 9)

p = [0, 0]

where the decision variables are the thickness (x1, . . . , x7) and
material properties of critical parts (x8, x9); the parametersp1
and p2 represent the barrier height and hitting position; the
constraints are the abdomen load (g1), lower rib deflection
(g2), middle rib deflection (g3), upper rib deflection (g4), lower
rib viscous criterion (g5), middle rib viscous criterion (g6),
upper rib viscous criterion (g7), public symphysis force (g8),
velocity of B-pillar at middle point (g9), and velocity of front
door at B-pillar (g10). Taking into account the uncertainty in
the manufacturing process [31], the uncertain design variables
and parameters are modeled with triangular fuzzy variables:

x̃n = (xn − 0.09, xn, xn + 0.09), n = 1, 2, 3, 4, 6, 7

x̃5 = (x5 − 0.15, x5, x5 + 0.15), p̃1 = (−30, 0, 30),

p̃2 = (−30, 0, 30).

The objective function of the vehicle side impact model is
a linear function. According to the fuzzy uncertainty theory,
the fuzzy entropy off (·) is a fixed number, and there is no
need to consider the fuzzy entropy in the formulation of robust
optimization problem. Thus, we only consider the expectation
of fuzzy objective function and the possibilistic failure index
of fuzzy constraints. Based on the robustness analysis and the
Stackelberg-Nash game strategy, the fuzzy robust optimization
model for vehicle side impact is represented as:















Leader: min
xl

10
∑

i=1

Πnew
f,i [gi(x̃l, x̃f , p̃)]

Follower: min
xf

E[f (x̃l, x̃f , p̃)].

(36)

To verify the effectiveness of the feasibility robustness
analysis method, we compute the possibilistic failure in-
dexes of two candidates based on the traditional relia-
bility model and the modified model. For two solutions
x(1) = (0.5,1,1,1,0.5,1.5,0.5,0.3450,0.3450) and x(2) =
(0.5,1,1.2,1,0.5,1.5,0.5,0.3450,0.3450), the feasibility robust-
ness for constraintg1 is analyzed in Table.I.

It can be observed that the possibilistic failure indexes of
x(1) and x(2) are the same under the traditional reliability
model. Once the upper bound of the interval abdomen load
exceeds the critical load, it can be considered that the con-
straint ofg1 fails. Thus, the traditional reliability model is too
conservative for analyzing the feasibility robustness accurately.
With the modified reliability model, the possibilistic failure
indexes ofx(1) and x(2) have different values, enabling
the information in the entire uncertain space to be analyzed.
Therefore, the modified reliability model is more realistic for
analyzing the feasibility robustness.
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TABLE I: Analysis of feasibility robustness for constraintg1

Feasibility robustness
Membership level Traditional model Modified model

α x(1) x(2) x(1) x(2)

0.0 1.0000 1.0000 0.1047 0.0694

0.1 1.0000 1.0000 0.0522 0.0127

0.2 0.0000 0.0000 0.0000 0.0000

0.3 0.0000 0.0000 0.0000 0.0000

Interval possibilistic 0.4 0.0000 0.0000 0.0000 0.0000

failure indexes 0.5 0.0000 0.0000 0.0000 0.0000

0.6 0.0000 0.0000 0.0000 0.0000

0.7 0.0000 0.0000 0.0000 0.0000

0.8 0.0000 0.0000 0.0000 0.0000

0.9 0.0000 0.0000 0.0000 0.0000

1.0 0.0000 0.0000 0.0000 0.0000

Fuzzy possibilistic
0.1500 0.1500 0.0105 0.0047

failure indexes

5 10 15 20

Gnerations (Leader optimization)

0

2

4

Le
ad

er
's

 o
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

26

28

30

F
ol

lo
w

er
's

 o
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
eLeader

Follower

Fig. 6: Convergent trajectories of the optimization using
leader-followers state transition algorithm

The convergent trajectories of the optimization using leader-
followers state transition algorithm are shown in Fig.6. It can
be observed that both the leader and follower can converge to
stable values after several iterations. The leader can achieve
higher satisfaction than its follower. Thus, the leader-followers
state transition algorithm is able to efficiently find the optimal
solution with higher feasibility robustness.

TABLE II: Optimal solutions for vehicle side impact problem

Deterministic design Reliability-based design [31] Proposed robust design

(x1, x2, x3) (0.5000, 1.2257, 0.5000) (1.5000, 1.1640, 1.0930) (0.5900, 1.2600, 0.5900)

(x4, x5, x6) (1.2071, 0.8752, 1.1250) (1.2310, 2.2220, 0.6450) (1.4100, 2.3638, 0.5779)

(x7, x8, x9) (0.4000, 0.3450, 0.1920) (0.9440, 0.3450, 0.3450) (0.4900, 0.3450, 0.1920)

(Πnew
f,1

,Πnew
f,2

) (0.0000, 0.0107) (0.0000, 0.0000) (0.0000, 0.0041)

(Πnew
f,3

,Πnew
f,4

) (0.0398, 0.4984) (0.0000, 0.0253) (0.0058, 0.2299)

(Πnew
f,5

,Πnew
f,6

) (0.0000, 0.0000) (0.0000, 0.0000) (0.0105, 0.0000)

(Πnew
f,7

,Πnew
f,8

) (0.0000, 0.5471) (0.0000, 0.1810) (0.0000, 0.2213)

(Πnew
f,9

,Πnew
f,10

) (0.2026, 0.0967) (0.1624, 0.0000) (0.0155, 0.0013)

E[f ] 23.5860 36.1916 28.5927
∑

Πnew
f,i

[gi] 1.3954 0.3687 0.4883

The comparison optimization results of deterministic design,
reliability-based design, and the robust design based on the
Stackelberg-Nash game are shown in Table.II. The determin-
istic design applies the standard state transition algorithm with
the same parameter settings in [25] to search for the optimal
solution. As a traditional method to optimize the crashworthi-
ness of vehicle side impact, the deterministic design takes no
account of the fuzzy uncertainties in variables. The reliability-
based design in [31] has strict requirements on feasibility

robustness by ensuring the achievement of the constraints at
the desired level, but it dose not consider the robustness perfor-
mance of objective functions. From Table.II, it can be observed
that the feasibility robustness of the deterministic solution is
weak. The solution obtained by the reliability-based design
has a lower failure possibility and satisfies the requirements
of 7 constraints. Note that the optimal solution of reliability-
based design is too conservative, leading to an increase in the
vehicle weight, which is uneconomic for practical applications.
The optimization performance in Table.II shows that the robust
optimization based on the Stackelberg-Nash game can provide
a solution not only with high feasibility robustness but also
with reasonable vehicle weight.

To analyze the computational performance of the proposed
robust optimization method, a total of 20 independent runs
are conducted. The average execution time of proposed robust
design is 365.54 seconds, which is much larger than that of
the deterministic design (5.88 seconds). This is due to the
high computational cost of robustness analysis, including a
nested optimization structure. In the deterministic design, each
candidate only needs to calculate the values of its objective
function and constraints; while in the proposed robust design,
each candidate needs to evaluate its performance under fuzzy
uncertainties, including sensitive analysis at several member-
ship levels.

B. Case 2: Optimization for power scheduling in zinc elec-
trowinning process

Optimal scheduling of power usage is important in the in-
dustrial process. The zinc electrowinning process accounts for
80% of the total energy consumption of zinc hydrometallurgy.
Under the power time-of-use pricing policy, the production
operation in different periods should be adjusted according to
the electricity price [32]. Due to the incomplete knowledge of
the process model, some parameters in the power scheduling
optimization problem are uncertain. Therefore, we study the
power scheduling optimization problem to verify the feasibil-
ity of the proposed robust optimization method in complex
industrial processes.

2ZnSO4+2H2O ==== 2Zn↓ +2H2SO4+O2↑ 

electrolysis

Cathode
Anode

H+

SO4
2-

Zn2+

Oxygen (O2) Metallic Zinc (Zn)

e-

Leaching 

solution

Spent 

electrolyte

Further 

treatment

Mixing cell

Mixed solution
Electrolysis cell

Rectifier 

control system

DC

Fig. 7: Electrolytic cell of zinc electrowinning process [32]
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A zinc electrowinning process includes several series pot-
rooms and each potroom has several parallel electrolytic
cells (shown in Fig.7). In order to minimize the electricity
charge (f (·)) and satisfy the requirement of zinc daily output
(h(·)), the optimization model of power scheduling in zinc
electrowinning process is formulated as:

min
x

f (x,p)=J0+

3
∑

i=1

7
∑

j=1

PiTiVij(x,p)Lij(x)

s.t. h(x,p)=
3

∑

i=1

7
∑

j=1

dRi(x,p)TiLij(x)=b

100 ≤ x1 ≤ 650, 45 ≤ x2 ≤ 60, 160 ≤ x3 ≤ 200

where Vij(x,p)=Nj(p1 − p2 ln(p3x
−1
3,i )−p4 ln(p5x2,i)

+p6x1,i(p7+p8x3,i−p9x2,i)
−1

+p10 lg x1,i+p11x1,i)

Lij(x)=Bjsx1,i

Ri(x,p)=p12 exp(p13+p14 lg x1,i)x
1.6
2,ix

−0.2
3,i

+(p15 exp(−p16+p17 lg x1,i)x2,ix
−0.2
3,i

+p18+p19x
0.6
2,i )

−1x−1
1,i (37)

d=1.2202g/Ah, s=1.13m2, b=960tons

T =[11, 5, 8]h

P =0.5627× [1.6, 1.0, 0.7]U/kWh

N=[240, 240, 246, 192, 208, 208, 208]

B=[34, 46, 54, 56, 56, 57, 57]

p=[1.588, 0.027, 1.1025× 10−12, 0.0135, 8.15,

6.2× 10−4, 0.5931, 0.0181, 0.0313,

0.0793, 5× 10−4, 1091.46,−4.06,

2.8, 0.0813, 1.8, 3.5, 0.35, 2172.45],

where the decision variables are the current density (x1,i),
the concentration ofZn2+ (x2,i), and the concentration of
H+ (x3,i) in the ith period; parameters (p) are the model
coefficients based on the electrochemical reaction mechanism
and historical data;J0 is the capacity electricity charge with
J0 = kc · ϕ, where kc is a fixed electricity price andϕ
is the maximum capacity of the transformers;Pi means the
electricity price of theith period;Ti is the duration of theith
period;Vij is the cell voltage of thejth plant in theith period;
Lij is the current magnitude of the electrolysis process of the
jth plant during theith period;b is the ideal zinc daily output;
d is the electrochemical equivalent of zinc;Ri is the current-
efficiency during theith period;Nj andBj are the numbers of
cells and plates in a cell of thejth plant; ands is the area of
the cathode plate. To account for the uncertainties in process
modeling, some of the parameters are modeled with triangular
fuzzy variables:

p̃n = (0.9× pn, pn, 1.1× pn), n = 3, 4, 6, . . . , 11

p̃n = (0.99× pn, pn, 1.01× pn), n = 12, 17

p̃n = (0.98× pn, pn, 1.02× pn), n = 13, 16, 19

b̃ = (945, 960, 975).

Using the robustness analysis and the Stackelberg-Nash
game strategy, the fuzzy robust optimization model for power
scheduling is formulated as:



















Leader: min
xl

Ψ[h(xl,xf1,xf2, p̃)]

Follower 1: min
xf1

E[f (xl,xf1,xf2, p̃)]

Follower 2: min
xf2

D[f (xl,xf1,xf2, p̃)].

(38)
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Fig. 8: Constraint values with candidate solutionsx(1),x(2),
andx(3)

TABLE III: Analysis of feasibility robustness for constrainth

Candidate solutions x(1) x(2) x(3)

Discrimination indexes 41.2126 19.1023 23.2362

To evaluate the feasibility robustness of candidate solu-
tion for equality constraint in the power scheduling op-
timization problem, the discrimination between constraint
value and ideal value is analyzed. Given three candidate
solutions x(1) = (160, 500, 600, 60, 60, 60, 200, 200, 200),
x(2) = (421, 484, 462, 45, 50, 45, 200, 199, 161), andx(3) =
(100, 650, 650, 60, 60, 60, 200, 200, 200), their constraint val-
ues are fuzzy variables which are shown in Fig.8, and their
discrimination indexes are listed in Table.III. It is obvious
that the zinc daily output under candidatex(1) is beyond
the satisfactory range. The zinc daily output under candidate
x(2) is close to the ideal value, and the discrimination
indexes betweenh(x(2)) andb is the smallest. Therefore, the
proposed feasibility robustness analysis method is effective for
evaluating the uncertainties of fuzzy equality constraint.

The convergent trajectories of the leader-followers state
transition algorithm are shown in Fig.9. The optimization
method based on the Stackelberg-Nash game strategy can
converge to a solution with higher satisfaction of feasibility
robustness (leader) and good satisfaction of optimality robust-
ness (follower 1 and follower 2).

The results of the deterministic optimization, the reliability-
based optimization, and the proposed robust optimization are
shown in Table.IV. The fuzzy variables off (x) and h(x)
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Fig. 9: Convergent trajectories of the optimization using
leader-followers state transition algorithm

TABLE IV: Optimal solutions for power scheduling in zinc
electrowinning process

Deterministic design Reliability-based design Proposed robust design

(x1,1, x1,2, x1,3) (117, 638, 598) (334, 226, 650) (100, 650, 650)

(x2,1, x2,2, x2,3) (60, 60, 60) (60, 60, 45) (60, 56, 60)

(x3,1, x3,2, x3,3) (190, 176, 162) (160, 200, 168) (197, 200, 200)

E[f ] 1.4635× 106 1.7359× 106 1.4670× 106

D[f ] 5.7161× 104 5.8382× 104 4.7754× 104

Ψ[h] 20.6371 18.9673 20.6256

Time(second) 1055.0934 1116.0213
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f ×106
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Fig. 10: Fuzzy variables off (x) and h(x) under the three
optimization methods

under the three optimization methods are shown in Fig.10.
The deterministic optimization method dose not consider the
parameter uncertainties, and its optimality robustness (D[f ])
is weak. In reliability-based design, the desired level of the
achievement for the constraint is set to be no worse than
97% of the optimal constraint performance (only consider
the discrimination index in (38)). With the strict requirement
on feasibility robustness, the reliability-base design achieves
the smallest value of the discrimination index. Fig.10 also
shows that the zinc daily output optimized by the reliability-
based design is the closest to the ideal value (960tons), but its
electricity charge is much higher than other methods. Base
on the proposed robust optimization method, the possible
constraint value has smaller discrimination index, and the
function f (x) gives better average performance and smaller
variations.

The average execution times of the deterministic design,
the reliability-based design, and the proposed robust design

are 9.72 seconds, 752.02 seconds, and 1116.02 seconds, re-
spectively. In the deterministic design, the candidate solution
dose not consider the impact of uncertainties. In the reliability-
based design, each candidate needs to calculate its objective
function value and analyze the performance of constraints
under fuzzy uncertainties. In the proposed robust design,
each candidate needs to evaluate the performance of both
objective and constraints under fuzzy uncertainties. Therefore,
the computational cost of the proposed robust design is higher
than that of other methods.

VI. CONCLUSION

This paper presented a new robust optimization method
to solve the constrained optimization problem with fuzzy
variables. A fuzzy expectation-entropy model is established
to evaluate the optimality robustness, while a comprehensive
analysis method is proposed to assess the feasibility robust-
ness. An optimization framework with the Stackelberg-Nash
game strategy is developed to analyze the hierarchical rela-
tionship in objectives. The state transition algorithm is given
to optimize the objectives for leader and followers sequentially
and obtain a equilibrium solution. Practical examples on
vehicle side impact design and power scheduling design are
used to verify the effectiveness of the proposed new design
techniques. The experimental results showed that the obtained
solution not only has higher satisfaction rate on feasibility
robustness, but also can guarantee the optimality robustness.
In the future, we will develop effective robustness analysis
methods to reduce computational costs, and consider the robust
optimization problem with complicated uncertainties.
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